**
****Ohm's Law **

Current flows in an electric circuit in accordance with several definite laws. The basic law of current flow is Ohm's law, named for its discoverer, the German physicist Georg Ohm. Ohm's law states that the amount of current flowing in a circuit made up of pure resistances is directly proportional to the electromotive force impressed on the circuit and inversely proportional to the total resistance of the circuit. The law is usually expressed by the formula I = V/R, where I is the current in amperes, V is the electromotive force in volts, and R is the resistance in ohms (*see* Electrical Units). Ohm's law applies to all electric circuits for both direct current (DC) and alternating current (AC), but additional principles must be invoked for the analysis of complex circuits and for AC circuits involving inductances and capacitances.

A series circuit is one in which the devices or elements of the circuit are arranged in such a way that the entire current passes through each element without division or branching into parallel circuits.

When two or more resistances are in series in a circuit, the total resistance may be calculated by adding the values of such resistances. If the resistances are in parallel, the total value of the resistance in the circuit is given by the formula

In a parallel circuit, electrical devices, such as incandescent lamps or the cells of a battery, are arranged to allow all positive (+) poles, electrodes, and terminals to be joined to one conductor, and all negative (-) ones to another conductor, so that each unit is, in effect, on a parallel branch. The value of two equal resistances in parallel is equal to half the value of the component resistances, and in every case the value of resistances in parallel is less than the value of the smallest of the individual resistances involved. In AC circuits, or circuits with varying currents, circuit components other than resistance must be considered.